Real Time Generation Of Smooth Curves Using Local Cubic
Segments

Martin Roche and Wanxing Li

Robot Systems Divison
National Burcau Of Standards
Gaithersburg, MD 20899

1. Introduction

In applying parametric cubic curve interpolation
procedures to engineering and scientific data we
consider the condition that the only restriction is
that the curve be smooth. By a smooth curve we
mean at a given input defining point P,, the
tangent vector for the cubic segment defined
between the points P,_, and P, has the same
direction as the tangent vector for the cubic seg-
ment defined between the points Py and Py,
when each is evaluated at P,. We present pro-
cedures that are suitable for the case:

(a) given that we have an interpolation curve for
the string P;,....P;,.;, we wish 1o define a
cubic segment between the points P, and
P; which, when added to the previously
defined interpolation curve will be a smooth
curve that interpolates P,,....P;.;, and P,,
while the point P,,, is being computed.

The classical problem of interpolation is:

(b) the usual problem of interpolating a given
string P,,...,P, of points where all the points
are known at the time the interpolation is
being determined.

With this classical problem spline functions are
quite often used for the interpolation. This
method has been discounted for case (a) above
because of the difficulty implementing a spline
function in this case. Since all points are not avail-
able during real time processing, the use of the
classical spline algorithms would be very time con-

Contribution of the Naional Bureau of Siandards. Not
subjeat to copyright.

suming for this application. That is the number of
functional operations (multiplications and addi-
tions, etc.) rules out consideration of this tech-
nique. Because of this we have considered local’
construction procedures in place of the standard

spline type of construction. .

Figure 1 A curve generated using the parabolic
blending procedure.

The parabolic blending (or Overhauser) pro-
cedure [1,2] which limits the required information
needed to generate a cubic segment is attractive
for both (a) and (b) listed above (Fig. 1). The
procedure will be seen to limit the arithmetical
operations and to minimize the ~computational
speed. This procedure has, in the past, been used
in generating curves for CAD applications. For
these applications the defining points are known
before one generates the curve which is case (b).
But this curve type is such that it can lend itself 1o
our application of generation of a curve as the

point information is supplied which is case (a).

Another attractive procedure is the three points
and a vector cubic segment definition method.
For the three points the vector will be associated
with the second point and a cubic segment would
be defined between the second and third given
points (Fig. 2). Coefficients for this case can be
determined with a minimum number of opera-
tions. Other variations of this procedure could
also be implemented easily.

Figure 2 Acurve generated using three points and a
vector procedure. The vector defines the tangent value
at the second point.

It should be noted that in the construction of the
curves of Figures 1, and 2, the same input coordi-
nate values were used for the two figures.

2. Defining Cubic Curve Segments by Parabolic
Blending

As the name suggests, parabolic blending involves
the concept of using blending functions [3,4] to
blend two parametrically defined second degree
polynomials into a cubic polynomial over an inter-
val. In particular, for four given points P, P, P,
and p,, 2 second degree polynomial, p , will be
defined by the points P, P, and P, and another-
second degree polynomial, q , will be defined by
the points P, P, and p,. We wish to select blend-
ing functions Bl and B2 such that: (i) Bl =
B1(t) and B2 = B2(t) are functions of the same
parameter; (ii) the resultant vector function C(1)
= Bl p + B2 q has vector equal to p, for 1= 0
and vector value equal to P, fort=1 (Fig. 3).

Overhauser [1] selected Bl= (1 - 1) and B2 = 1.
Since p and q are second degree vector polynomi-
als, we can write

p=p(ry=(*,r.1)B
q=q(s)=(s?,s,1)D

(la)
(1b)

where both B and D are 3x3 matrices. Writing the
parameters r and s as linear functions of t (i.e. r
= at+ bands= ct+ d), the resulting vector
curve C is a parametric cubic:

Cy= (0 LA,
where A isa 4 x 4 matrix.

If we select the r values and the s values such
that
p(0)= p . p(1/2) = p, and p(1) =
q0) = p,, q(1/2) = p, and q(1) =
we get from equations (1a) and (1b) that
s relate to t by the equations

r=050t+1) and s = 0.5¢

p)
P, _
r and

(2).

Using equations (1) and (2), and some manipula-
tions we arrive at

P
P2
P3
Pa

cCWy=[>22r M (3a),

Figure 3 Four points defining a parabolic blend
between the second and third points are being
displayed. Also displayed is the cubic segment defined
by these points.

where
-2 32 =32 12
M = 1 -5/2 2 -1/2
= {-v2 o 1/2 0|
0 1 0 0
or
C(t)=at+ bi>+ci1+d (3b)
where

~V2py+ 3/12py;~- 3/2p3+ 1/2 py
=p+ =52py+ 2p3+ -1/2p,
-1/2p;+ 12 p,

= P2

H

an on
!

(where details of the manipulations can be found
in [1], or[2]). Note: One must keep in mind that
each P, is a vector, say p= (x Y, Z, w) so that
the coefficients determined for the cubics are vec-
tors (we are working with parametric equations).

In generating a complete curve, each curve seg-
ment is defined by the use of equation (3a). Spe-
cial consideration is given to the first and the last
segment. If P, P, and p, are the first three points
generated, then 10 generate the cubic between p
and P, setp, = P, and use equation(3a).If P, is
the last point to be generated, then set p = P,
and apply equation (3a) to the points PP P,
and p . It is worth noting that for a sequence of
distinct points (p, not equal to P, for any i) that
first derivative continuity at the boundary of two
adjacent cubic curve segments is maintained, i.e, a
smooth curve is generated (see [2] for details).

3. Three Points and A Vector Procedure

We are given given three points P.l, Po' and P,
and a vector V and a cubic segment is to be
defined between points Po and P‘ (Fig. 4)[5]. Let
C(1) be the cubic polynomial such that

c'0=vV
and assume a param eterization such that
C(-D=P_y;
C(0) = Py
C({l)= P,.
1f
Cy=a’+ bt’+ ct+d

is the cubic, then

d = PO;
c=V.
C(—]) =—-a +b +~-¢ +d=—'P-); (4)
C)=a+b+c+d=P,.
Letting q = P_l + (c - d) and q,= P) -(c+ d)
we obtain
a=(-q1+ q2)/2 (5)
b=(q,+ q/2 (6)-

The coefficients a, b, ¢, d are seen to be easily
determined by employing system (4) and equa-
tions (5) and (6).

Figure 4 The three points and a vector defining a
cubic curve segment between the second and third
points as outlined in Section 5 are being displayed.
Also displayed is the cubic segment defined by the
points and the vector.

To define a complete curve using these cubic
curve segments the following steps are required:

a. For the first cubic segment the following
three steps are required:
(1) The first three points P, P, and P, of a
sequence are given;
(ii) We assume at point p, the cubic vector
segment Co(t) to be defined has all zero
second derivative components. If

Colt) =ar®>+ b2+ ct+ d

is the cubic, then by our assumption b = 0
(the zero vector), and we also have CO(O) =
p, = d. Then by solving the system

Co() = a+c+d = a+c+py = p)

Co(2) = 8a+2c+d = 8a+2c+p, = p)

we obtain the coefficient vectors a and c.
Hence the cubic between the points P, and P,
is determined.

(iit) Using the cubic coefficients of (ii),
points between P, and p are computed.

b. Given the point p and the fact that a cubic
segment has been defined between the
points P, and P, the following steps are
taken 10 determine the cubic for the seg-
ment between P, and p;

(i) The vector V is determined by the cubic
that was defined between P, and P, In par-
ticular V is set equal to the tangent vector of
that cubic evaluated at the point p_ ;

(iii) The three points PP, and P, and the
vector V determine the cabic vector
coefficiens as outlined above;

(iv) Points between P, and p, are computed.

A pocedure simular to the one just described
could be implemented where C(1) is a cubic with
C'(-1) = V being given instead of C/(0) = V.
Then equation (4) would become

d= Py,

V=3a~-2b+c+;
C(-1)==-a+b+-c+d=P_y;
C()=a+b+c+d=P,.

and the computation to determine the coefficients
will be similar to the above [5]. We use the cubic
segment in each case in the interval (-1, 0). In
this case the construction will lag by one point.

4. Vector Considerations For The Three Points
And Vector Construction

Because we are constructing parametric cubic seg-
ments using a tangemt vector as part of its
definition during the construction technique, cau-
tion must be used [4]. If the vector magnitude is
greater than the distance between which the curve
segment is being defined, the cubic could show a
whip like effect[Fig. 5, 6, and 7].

In our implementation we resolved this dilemma
by allowing for the scaling of each vector com-
ponent by S/ TV, where: S = a scale factor;

TV = the absolute value of the component of the
vector that is largest in magnitude.

A more sophisticated procedure could be imple-

mented by using the factor (S * DI)/TV, where S
and TV are as above and

DI = the absolute value of the component that is
the largest in magnitude of the vector which is the
difference of the two points between which the
cubic vector is to be defined.

By using this last procedure and restricting S 1o
values between 0 and 1, the vector magnitude will
always be less than the magnitude of the distance
between which the curve segment is being
defined. (DI could also have been selected as the
distance between the two points.)

Figure § An example using the procedure of section 3
and multiplying the components of the defining vector
V by S/TV where S is equal 10 15 is displayed.

Figure 6 An example using the procedure of section 3
and multiplying the components of the defining vector
V by S/TV where S is equal to 35 is displayed. (The
same input points as in figure 5 are used.)

——7(

Figure 7 An example using the procedure of Section
3 and multiplying the components of the defining vec-
tor V by S/TV where S is equal to 50 is displayed.
{The same input points as in figure S are used.)

5. Comparing The Reguired Number of Opera-
tions to Compute A Cubic Curve Segment

A criterion for suitability of a curve type is the
number of computations required to compute
points along a given curve segment. To determine
the points, the cubic vector coefficients are com-
puted to determine the expression

CW=at’+b*+ct1+d ;

then this expression is used to compute coordinate
values along the curve. In each of the procedures
discussed, the difference in computation time will
be related 10 the determination of the coefficients.
With this in mind one needs only to consider the
operations involved in defining the vector
coefficients to make a comparison of the different
procedures. In comparing the number of opera-
tions performed to define vector coefficients for
the above three cases, one needs only to consider
one vector component. That is, one would solely
need to determine the number of operations of

the first vector component of each vector
coefficient. With this in mind:
(i) One observes that for each cubic component

for the Overhauser parabolic blending case
there are nine multiplications and seven
additions required to compute the
coefficients.

(ii) For the three points and a vector case dis-
cussed in section 3, the coefficients for one
component of a cubic segment are deter-
mined by four multiplications and divisions;
the sum of the additions and subtractions
will be eight (these numbers include the
computations to compute the vector V). The
multiplications of the scaling mentioned in
section 4 could also be included bringing the
number of multiplications to five or six
depending upon how you wished to include
the S term being divided by the TV term.

If speed is the sole criterion for selection, then
one of the three points and a vector procedure or
something similar to them would be selected. One
will note that when using the three points and a
vector procedure outlined above, at times a
natural looking curve is not generated because of
the lack of control of the slope vector at the point .
P, of section 3. With the other mentioned pro-
cedure (Parabolic Blending) the last point supplied
is used as part of the procedure to define the slope
vector value for the preceeding point. The curve
generated by the Overhauser parabolic blending
case has more aesthetic appeal, but has a slightly
greater computational time. The proper choice of a
curve type will depend on one’s application.

References :

1. Overhauser, A., "Analytic Definition of
Curves and Surfaces by Parabolic Blending,”
Technical Report No. SL68-40, Ford Motor
Company Scientific Laboratry, May 8, 1968 .

2. Brewer, J.A.,"Three Dimensional Design by
Graphical Man-Computer Communication,”
Purdue University, PhD Thesis, May, 1977,

3. Mortenson, M. E., Geometric M odeling, John
Wiley and Sons, Inc., Somerset, New Jersey,
198S.

4. Forrest, AR, "Curve and Surfaces for Com-
puter Aided Design,” Unjveérsity of Cam-
bridge, PhD Thesis, July 1968.

5. Roche, M., and Li, W., "A Note on Real
Time Parametric Cubic Segment Curve Gen-

eration,” Intelligent Instruments & Comput-
ers, Vol. §, No. 7, July 1987.

#define VvVOI1D int

/"* RAFARIXRRERFRR AR AR AR R AR ARk ke k bRk k ok kkkkokk ko 'k/
/* ARRE A AR ARET A AKX A ARREAA A A RAA R A AR AR AKR R AR R koo k ik */
/* Parabolic Blending Procedure */
S x ARERAN KA ARG AKX RAA I A AN AR AT I AR AR A AR R A A KRR KRR K 'k/

/* Given a sequence of four points, this routine
will determine the coefficients for a cubic
curve segment by parabolic blending between
the first and second points, the second and
third points, or the third and fourth points
[See section 2]. */

VOID Plot_Seg(ql, g2, g3, g4, sn, np, nd, nseg, q)
float qlll, q2l}, q3{), q4l] :
/* These are the defining
* points for the Overhauser curve segment.

*
int sn ; /*/The segment to be plotted.
* The first , second , or last.
*®
int np s /*/Number of segment points to be plotted.
*
int nd ; /*/The dimension of the coordinate vectors.
. .
int nseg ; /*/The segment number for the segment to be generated.
*/

float ql10]131 -
/* the computed points along the
* cubic segment from points p2 to p3.
*/

float pli4), p2(4]), p314]1, pal4] ;

int sp =2 ; /* Should the first point of the segment be
* plotted ? If yes , sp =1, if no , sp =2.
*/

int i, PTT ;

for(i=0 ; i < nd ; i++)
{
plli} = qi[i) :

p2li] = g2{i} :
p3(i)] = q3(1i]
pali] = qg4li} ;
if(sn == 1)
{
for(i = 0 ; i < nd ; i++)
{
p2li) = ql(i] ;
p3li) = g2[i] ;
pdli) = q3[i) ; -
sp =1 ;

}
PTT
rlot_Pa

/* END

0_seg(pl, p2, p3, p4, np, nd, q)
c{g, np, nd, sp, nseg)

; OF PLOT_SEG */

O_seg(pl
float

int

int
float

float

/!******

* Set

and

¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ % ¥ ¥ F

then

for(i = 0 ; i < nd ; i++)
{
pl{il = q2[i) ;
p2{i)] = q3[i]
p3l[i) = g4i{i} :

}

’

.
’

r P2, P3, p4, NP, ND, q)

pill, p2{1, p311, p4l}
/* These are the defining points for

Overhauser Curve segment defined

between points p2, and p3.

For i =0, 1, and 2,

pi{0] - is the x~coordinate

pi{l] - is the y-coordinate

pi{2] - is the z~coordinate.

.
’

»

NP This gives the number of points of the curve segment
that will be computed . The computed points will be
stored in the array gql][]. The first point will be
{(qi0)[0), qf0]11), ql0)[2))=(p2i0], p2(1], p2(2]
and the last point will be (g[NP-1]{01,

q(NP-1] 121) =(p3(0], p31[11, p31[2]).

)
q[NP-1][1],

* % * % X % * ¥ F * ¥ *

*/

/* This gives the dimension of the system .
* equal 1, 2, or 3.

*/

/* The output coordinate array.

*/

’

ND ND can

ql101(3]

1
/* Parameter value for the curve segment at a given point.
*/

’

-
’

i' jl
t ., qq

af4] (3]

AEEN IR A RAN A AR KA KA KK A AN A AR ARk kR Ak kA F A XAk Rk k™ kKK

i-1/2
|1
1=-1/2
| O
Ipll
ip21
1p31
Ip4}

3/2
-5/2
0
1

-3/2
2
1/2

0

1/21
-1/21
0l

01

14

laf0) 11
lall}) 111
lal2] 1)1
ta{3)11!
n-th point is computed by the expression

A

N * P

’

the

{qlnl {01, glnl (1], gin){2]) = (t**3, t**2, t, 1) * A

Load the & matrix .

+ % % * *

t‘tti**i*********t*i******************************t**i***************/
for(i = 0 ; i < ND ; i++4)

al0][i) = - 0.5*p1(i] + 1.5*p2[i] - 1.5*p3{i] + 0.5*p4(i) ;
alll(i]) = pl{i] - 2.5*p2{i) + 2.0*p3(i) - 0.5*p4[i] ;
al2]{i)] = - 0.5*p1{i] + 0.5*p3[i) ;
a[3]1i] = p2[i] ;
}
/* Now compute the points along the cubic segment.
* The first and last are first loaded.
*/
for(3 =0 ; 3§ < ND ; 3j++)
{
qf0l{3j1 = p2({3] ¢
qINP-1][3) = p3[3] -
}

/* The intermediate coordinates are loaded.
*x/
for(i = 1 ; i< (NP =1) ; i++)
{
t = (float)i/ (NP =1) ;
for(j = 0 ; jJ < ND ; j++)
{

qg = al[0][3]) ;
for(l =0 ; 1 < 3 ; 1++) gg = a[l+1]([3] + t*qq ;
qli} {3l = qa:

}
return(Q0) ;
} /* END OF O-seg */

/* */
/* 9k o gk Tk gk % sk gk %k sk gk 9 9 9k ok 3k 3k sk ok db v gk Jk ok ok ok ok ok sk s ok ob b ok o Sk ok ok b ok ok ok ok ok o */
/* 2 22 S22 R R RS R R SRR RS dXRRERas RS RRERR Y &1 */
/* HREARIEAAAARATRA AKX ARARARAARAA AT AR EA A AR Rk kR ek ok k% */
/i de Je v Ye vk Y o e vk W ook sk vk gk dk ok Yk %k ok W ok kS Tk 3k ok % vk d %k ok gk %k ok %k k% %k kR 'k/
#define VOID int

#define abs (A) ((B) >= 0.0 2 (AY : (=BA))
#define max (A, B) ((B) >= (B) 2?2 (A) : (B))

/* % %k % vk de %k Je de v e %k % vk vk vkt vk vk vk v o ok T ok gk vk ke ok ok vk okt kot ok ke %k ok ok ok R ok */
/'ﬁ Peodk ok ok % T g Tk W gk sk sk %k sk sk sk ok ot gk gk sk Ak gb ok sk ok 3k ok ok ok ok %k ok gk ok b ok sk ok b ok ok ok ok ok */
/* Three Points And A Vector Procedure */
/* Pe %k d %k %k T % e gk sk de Sk J %k gk %k Tk ok e w3k b gk ok sk R vk ok Jk %k gk W sk ok ok b ok % %k %k ok ok W % */

/* Given a sequence of three points and a vector
(this vector will be computed internally)
this routine will determine the coefficients
for a cubic curve segment following the procedure
of section 3. x/ -

VOID Plot_Seg(p0, pl, p2,vsf, np, nd, nseg, coef)
float p01], pl(), p21(] :
/* These are the three points used to define

fl

oat

int

int

£l

f1

oat

oat

float

/i

the cubic segment. The vector V is

internally computed. */
np /* Number of segment points to be plotted. */
nd /* The dimension of the coordinate vectors. */
nseqg /* The segment number for the segment

to be generated */
coef (4] (4] ; /* The coefficients for the cubic segment. */
vsf /* the vector scale factor */
vi{4:
sp =2 ; /* Should the first point of the segment be

plotted ? If yes , sp =1, if no , sp =2. */
i, iflag ;
qll0]){3] /* the computed points along the

cubic segment from points pl to p2

or from p2 to p3. */

The vector V is internally computed.
*/

if(nseg ==1)

/>

/*

/*

{

else

If nseg = 1 then this is the first segment of the

curve to be generated. In this case the vector V

is computed at t= 0.0 by assuming that the second

derivative is zero at this point. Since the cubic

passes through the points p0, pl and p2

V= 4/3*(pl - p0) ~ 1/6*(p2 - p0) */

™we=0.0 ;
i=20
while (i < nd)
{
V{i] = 1.33333*(pl[i] - pO[i])
+ 0.1666666*(pl[i) - pO[i]) ;
TV = max(abs(V[i]), TV) :
i++ ;
}
™V = vsf/TV ;
i=20;
while(i < nd)
while (i < nd)
{
V{i] = v[il*TV ;
i++ ;
}

Call C_coeff to compute the coefficients. */ -
C_coeff (p0, pl, p2, V, coef, nd) ; -

V is determined by the coefficients of the last
cubic segment . That is if
C(t) = coef[3)[) +coef(2)([]*t +coef[l][]*t**2

+ coef[0)[]*t**3
is the last cubic generated, then
C’(t) = coef[2](] +2*coef[1][)*t +3*coef[D][])*t*x*2
determines the vector V.

T™v=20.0 ;
i=20;
while (i < nd)
{
VI[i] = coef[2]{i]) +2*coef (1] [i] +3*coef{0][i]
TV = max(abs(V[i}]), TV) ;
i++ ;
}
™V = vsf/TV ;
i=20:;
while (i < nd)
{
VIii] = V[i]*TV

i++ ;
}
/> Call CC_coeff to compute the coefficients.
CC_coeff (p0, pl, p2, V, coef, nd) ; |}
/* Call Comp_pts to compute points along the cubic segment.

Comp_pts(coef, np, nd , tf, tl1 ,q) :

Plot_Pac(q, np, nd, sp, nseg) ;
} /* END OF PLOT_SEG */

VOI1D C_coeff (p0, pl, p2, V, coef, nd)
float po[]r plllr PZU: Vi), Coef[4][4] H
int nd

{

float qll4], g2l4] :

int i

float sumx, sumy

i =0 3
while (i < nd)
{

coef[3][i] = pO{i)
coef[2][1i] = V[i] H
qlfi] = pl{i] - (coef[3]1[i] +coef[2][il) :
g2[i) = p2ii] - (coef[3]1[i] +2*coef(2)({i])
coef{1]1[i] = 2* gl{i] =- 0.25*g2{i]) :
coef[0]{i] = ~-qgl(i] + 0.25*g2({i}
i++

} /* END OF THE C_coeff ROUTINE */

VOID CC_coeff (p0, pl, p2, V, coef, nd)
float p0I1]), pll{), p2l], VI], coef[4](4] ;
int ngd ;

{

float qgqll4], g2{4]

int i
fleoat sumx, sumy ;
i =0

while (i < nd)

*/

*/

*/

]

coef (31[i]l = pl{i} ;

coef[2](i} = VI[i] H

gl(i] = pO0{i]l - (coef{3}[i) -coefl[2][i]})} :
g2(i] = p2{i] - {coef[3][i} +coef[2][i]) ;
coef(11{i} = (ql{i] + qg2li} /2. :

coef (0] {i] = (-qlfi] + q2([il})/2. ;

i++ ;

/* END OF THE CC_coeff ROUTINE */

Comp_pts{(coef, np, nd, tf, tl, q)

float

int

int
float
int
float
float
dt =

/a-

for(i

}

coef (4] (4}, tf, tl1 ;

/* These are the coefficients for
the cubic curve segment
points that are to be computed between
tf, and tl.

np ;

/* This gives the number of points of the curve segment
that will be computed . The computed points will be
stored in the array gq(}[). The first point will be
(q{01(01, qf0111], gl0}[2))=(p2[0), p2[1), p2[2])
and the last point will be (q[NP-1][0), gq[NP-1][1],
qiNP-1]1[2])} =(p3[0), p3I[1], p3[2]).

nd ;

/* This gives the dimension of the system . nd can
equal 1, 2, or 3.

ql1011(3]1

/* The output coordinate array .

i, 3. 1
t , qg

/* Parameter value for the curve segment at a given point.

dt ;

(tl - tfY/(np -1) ;
Now copute the points along the cubic segment
= 0 ; i< np ; i++)

t = tf + ((float)i)*dt :;
for(j= 0 ; 3 < nd ; j++)

{
gg = coef[0][3)

for(l =0 ; 1 <3 ; 1++) gg = coef[1+1])([j) + t*gq ;

qlilljd] = qg

return(0) :

}

/* END OF O-seg */

*/

*/

*/
*/

*/

*/

